MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.1244 Steel

C85900 brass belongs to the copper alloys classification, while EN 1.1244 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.1244 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210 to 220
Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 460
730 to 770

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 330
47

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
26 to 28
Strength to Weight: Bending, points 17
23 to 24
Thermal Diffusivity, mm2/s 29
14
Thermal Shock Resistance, points 16
23 to 25

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0 to 0.050
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.65 to 0.75
Copper (Cu), % 58 to 62
0 to 0.3
Iron (Fe), % 0 to 0.5
98.1 to 99.2
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.8 to 1.1
Nickel (Ni), % 0 to 1.5
0
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0