MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.4313 Stainless Steel

C85900 brass belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
12 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 460
750 to 1000
Tensile Strength: Yield (Proof), MPa 190
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 130
780
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 28
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.4
Embodied Energy, MJ/kg 49
34
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 170
870 to 2100
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
27 to 36
Strength to Weight: Bending, points 17
23 to 28
Thermal Diffusivity, mm2/s 29
6.7
Thermal Shock Resistance, points 16
27 to 36

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
78.5 to 84.2
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0 to 1.5
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.7
Sulfur (S), % 0.1 to 0.65
0 to 0.015
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0