MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.4421 Stainless Steel

C85900 brass belongs to the copper alloys classification, while EN 1.4421 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.4421 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
11 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 460
880 to 1100
Tensile Strength: Yield (Proof), MPa 190
620 to 950

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 130
870
Melting Completion (Liquidus), °C 830
1440
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
16
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 49
36
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
960 to 2270
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
31 to 39
Strength to Weight: Bending, points 17
26 to 30
Thermal Diffusivity, mm2/s 29
4.4
Thermal Shock Resistance, points 16
31 to 39

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
74.4 to 80.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 1.5
4.0 to 5.5
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0.1 to 0.65
0 to 0.020
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0