MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.5113 Steel

C85900 brass belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170 to 270
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
11 to 18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 460
580 to 900
Tensile Strength: Yield (Proof), MPa 190
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
52
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 170
270 to 1570
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
21 to 32
Strength to Weight: Bending, points 17
20 to 27
Thermal Diffusivity, mm2/s 29
14
Thermal Shock Resistance, points 16
17 to 26

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
97 to 97.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
1.6 to 1.8
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.25
0.9 to 1.1
Sulfur (S), % 0.1 to 0.65
0 to 0.025
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0