MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.6579 Steel

C85900 brass belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
260 to 290
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 460
850 to 980
Tensile Strength: Yield (Proof), MPa 190
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
440
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.7
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 49
22
Embodied Water, L/kg 330
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
950 to 2210
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
30 to 35
Strength to Weight: Bending, points 17
25 to 28
Thermal Diffusivity, mm2/s 29
11
Thermal Shock Resistance, points 16
25 to 29

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
94.2 to 96.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 0 to 1.5
1.4 to 1.7
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0