MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.6580 Steel

C85900 brass belongs to the copper alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
220 to 350
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
11 to 19
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 460
720 to 1170
Tensile Strength: Yield (Proof), MPa 190
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
450
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 790
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.3
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 49
23
Embodied Water, L/kg 330
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
560 to 2590
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
26 to 41
Strength to Weight: Bending, points 17
23 to 31
Thermal Diffusivity, mm2/s 29
11
Thermal Shock Resistance, points 16
21 to 34

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
93.7 to 95.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 1.5
1.8 to 2.2
Phosphorus (P), % 0 to 0.010
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0.1 to 0.65
0 to 0.035
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0