MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN 1.7380 Steel

C85900 brass belongs to the copper alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
160 to 170
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
19 to 20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 460
540 to 550
Tensile Strength: Yield (Proof), MPa 190
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 130
460
Melting Completion (Liquidus), °C 830
1470
Melting Onset (Solidus), °C 790
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 49
23
Embodied Water, L/kg 330
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230 to 280
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
19 to 20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 29
11
Thermal Shock Resistance, points 16
15 to 16

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 58 to 62
0 to 0.3
Iron (Fe), % 0 to 0.5
94.6 to 96.6
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.5
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0.1 to 0.65
0 to 0.010
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0