MakeItFrom.com
Menu (ESC)

C85900 Brass vs. EN AC-43300 Aluminum

C85900 brass belongs to the copper alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C85900 brass and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
91 to 94
Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 30
3.4 to 6.7
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 460
280 to 290
Tensile Strength: Yield (Proof), MPa 190
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 170
540
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 830
600
Melting Onset (Solidus), °C 790
590
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 89
140
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
40
Electrical Conductivity: Equal Weight (Specific), % IACS 28
140

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.5
Embodied Carbon, kg CO2/kg material 2.9
7.9
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 330
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 170
300 to 370
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
54
Strength to Weight: Axial, points 16
31 to 32
Strength to Weight: Bending, points 17
37 to 38
Thermal Diffusivity, mm2/s 29
59
Thermal Shock Resistance, points 16
13 to 14

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
88.9 to 90.8
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Copper (Cu), % 58 to 62
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.19
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.010
0 to 0.1
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
9.0 to 10
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 31 to 41
0 to 0.070
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.1