MakeItFrom.com
Menu (ESC)

C85900 Brass vs. SAE-AISI 1022 Steel

C85900 brass belongs to the copper alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
17 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 460
480 to 550
Tensile Strength: Yield (Proof), MPa 190
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 790
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190 to 530
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
17 to 19
Strength to Weight: Bending, points 17
17 to 19
Thermal Diffusivity, mm2/s 29
14
Thermal Shock Resistance, points 16
15 to 17

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
98.7 to 99.12
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.7 to 1.0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0.1 to 0.65
0 to 0.050
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0