MakeItFrom.com
Menu (ESC)

C85900 Brass vs. SAE-AISI 1078 Steel

C85900 brass belongs to the copper alloys classification, while SAE-AISI 1078 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is SAE-AISI 1078 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 460
730 to 780
Tensile Strength: Yield (Proof), MPa 190
430 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 790
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
49
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 330
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
77 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 170
490 to 860
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
26 to 28
Strength to Weight: Bending, points 17
23 to 24
Thermal Diffusivity, mm2/s 29
13
Thermal Shock Resistance, points 16
25 to 26

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.72 to 0.85
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
98.5 to 99
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.3 to 0.6
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0.1 to 0.65
0 to 0.050
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0