MakeItFrom.com
Menu (ESC)

C85900 Brass vs. C14500 Copper

Both C85900 brass and C14500 copper are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 30
12 to 50
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 460
220 to 330
Tensile Strength: Yield (Proof), MPa 190
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 830
1080
Melting Onset (Solidus), °C 790
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 89
360
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
94
Electrical Conductivity: Equal Weight (Specific), % IACS 28
95

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 170
21 to 300
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 16
6.8 to 10
Strength to Weight: Bending, points 17
9.1 to 12
Thermal Diffusivity, mm2/s 29
100
Thermal Shock Resistance, points 16
8.0 to 12

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Copper (Cu), % 58 to 62
99.2 to 99.596
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0.0040 to 0.012
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0.1 to 0.65
0
Tellurium (Te), % 0
0.4 to 0.7
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0