MakeItFrom.com
Menu (ESC)

C85900 Brass vs. C17510 Copper

Both C85900 brass and C17510 copper are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 30
5.4 to 37
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 460
310 to 860
Tensile Strength: Yield (Proof), MPa 190
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 170
220
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 830
1070
Melting Onset (Solidus), °C 790
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 89
210
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 28
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 24
49
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.9
4.2
Embodied Energy, MJ/kg 49
65
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 170
64 to 2410
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 16
9.7 to 27
Strength to Weight: Bending, points 17
11 to 23
Thermal Diffusivity, mm2/s 29
60
Thermal Shock Resistance, points 16
11 to 30

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0 to 0.2
Antimony (Sb), % 0 to 0.2
0
Beryllium (Be), % 0
0.2 to 0.6
Boron (B), % 0 to 0.2
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 58 to 62
95.9 to 98.4
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0 to 1.5
1.4 to 2.2
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0 to 0.2
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5