MakeItFrom.com
Menu (ESC)

C85900 Brass vs. C18200 Copper

Both C85900 brass and C18200 copper are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is C18200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 30
11 to 40
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 460
310 to 530
Tensile Strength: Yield (Proof), MPa 190
97 to 450

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 830
1080
Melting Onset (Solidus), °C 790
1070
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 89
320
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
80
Electrical Conductivity: Equal Weight (Specific), % IACS 28
81

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
43 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 170
40 to 860
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 16
9.6 to 16
Strength to Weight: Bending, points 17
11 to 16
Thermal Diffusivity, mm2/s 29
93
Thermal Shock Resistance, points 16
11 to 18

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Chromium (Cr), % 0
0.6 to 1.2
Copper (Cu), % 58 to 62
98.6 to 99.4
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0 to 0.090
0 to 0.050
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0 to 0.1
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0