MakeItFrom.com
Menu (ESC)

C85900 Brass vs. C28000 Muntz Metal

Both C85900 brass and C28000 Muntz Metal are copper alloys. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 30
10 to 45
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 460
330 to 610
Tensile Strength: Yield (Proof), MPa 190
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 830
900
Melting Onset (Solidus), °C 790
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 89
120
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
28
Electrical Conductivity: Equal Weight (Specific), % IACS 28
31

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 49
46
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 670
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 16
11 to 21
Strength to Weight: Bending, points 17
13 to 20
Thermal Diffusivity, mm2/s 29
40
Thermal Shock Resistance, points 16
11 to 20

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Copper (Cu), % 58 to 62
59 to 63
Iron (Fe), % 0 to 0.5
0 to 0.070
Lead (Pb), % 0 to 0.090
0 to 0.3
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
36.3 to 41
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.3