MakeItFrom.com
Menu (ESC)

C85900 Brass vs. C84400 Valve Metal

Both C85900 brass and C84400 valve metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 70% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 30
19
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 460
230
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 830
1000
Melting Onset (Solidus), °C 790
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 89
72
Thermal Expansion, µm/m-K 20
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
16
Electrical Conductivity: Equal Weight (Specific), % IACS 28
17

Otherwise Unclassified Properties

Base Metal Price, % relative 24
29
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 49
46
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
36
Resilience: Unit (Modulus of Resilience), kJ/m3 170
58
Stiffness to Weight: Axial, points 7.3
6.6
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 16
7.2
Strength to Weight: Bending, points 17
9.4
Thermal Diffusivity, mm2/s 29
22
Thermal Shock Resistance, points 16
8.3

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0 to 0.0050
Antimony (Sb), % 0 to 0.2
0 to 0.25
Boron (B), % 0 to 0.2
0
Copper (Cu), % 58 to 62
78 to 82
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0 to 0.090
6.0 to 8.0
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0 to 1.5
0 to 1.0
Phosphorus (P), % 0 to 0.010
0 to 1.5
Silicon (Si), % 0 to 0.25
0 to 0.0050
Sulfur (S), % 0.1 to 0.65
0 to 0.080
Tin (Sn), % 0 to 1.5
2.3 to 3.5
Zinc (Zn), % 31 to 41
7.0 to 10
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.7