MakeItFrom.com
Menu (ESC)

C85900 Brass vs. N07750 Nickel

C85900 brass belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 460
1200
Tensile Strength: Yield (Proof), MPa 190
820

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 130
960
Melting Completion (Liquidus), °C 830
1430
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 89
13
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
60
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.9
10
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 330
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1770
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 16
40
Strength to Weight: Bending, points 17
30
Thermal Diffusivity, mm2/s 29
3.3
Thermal Shock Resistance, points 16
36

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0.4 to 1.0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 58 to 62
0 to 0.5
Iron (Fe), % 0 to 0.5
5.0 to 9.0
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.0
Nickel (Ni), % 0 to 1.5
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0.1 to 0.65
0 to 0.010
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0