MakeItFrom.com
Menu (ESC)

C85900 Brass vs. N08810 Stainless Steel

C85900 brass belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
33
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 460
520
Tensile Strength: Yield (Proof), MPa 190
200

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 830
1400
Melting Onset (Solidus), °C 790
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
12
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.9
5.3
Embodied Energy, MJ/kg 49
76
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
100
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 29
3.0
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0.15 to 0.6
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 58 to 62
0 to 0.75
Iron (Fe), % 0 to 0.5
39.5 to 50.7
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Nickel (Ni), % 0 to 1.5
30 to 35
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0.1 to 0.65
0 to 0.015
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0