MakeItFrom.com
Menu (ESC)

C86100 Bronze vs. 514.0 Aluminum

C86100 bronze belongs to the copper alloys classification, while 514.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C86100 bronze and the bottom bar is 514.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 20
7.3
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 43
25
Tensile Strength: Ultimate (UTS), MPa 660
180
Tensile Strength: Yield (Proof), MPa 350
74

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 940
640
Melting Onset (Solidus), °C 900
610
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 35
140
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
35
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.9
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11
Resilience: Unit (Modulus of Resilience), kJ/m3 530
41
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
51
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 10
57
Thermal Shock Resistance, points 21
7.9

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
93.6 to 96.5
Copper (Cu), % 66 to 68
0 to 0.15
Iron (Fe), % 2.0 to 4.0
0 to 0.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 2.5 to 5.0
0 to 0.35
Silicon (Si), % 0
0 to 0.35
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 17.3 to 25
0 to 0.15
Residuals, % 0
0 to 0.15