MakeItFrom.com
Menu (ESC)

C86100 Bronze vs. EN 1.4913 Stainless Steel

C86100 bronze belongs to the copper alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86100 bronze and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
14 to 22
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 660
870 to 980
Tensile Strength: Yield (Proof), MPa 350
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 170
700
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
24
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.9
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 350
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 530
600 to 1860
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
31 to 35
Strength to Weight: Bending, points 21
26 to 28
Thermal Diffusivity, mm2/s 10
6.5
Thermal Shock Resistance, points 21
31 to 34

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 66 to 68
0
Iron (Fe), % 2.0 to 4.0
84.5 to 88.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 2.5 to 5.0
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 17.3 to 25
0