MakeItFrom.com
Menu (ESC)

C86100 Bronze vs. Grade 4 Titanium

C86100 bronze belongs to the copper alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86100 bronze and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
17
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 660
640
Tensile Strength: Yield (Proof), MPa 350
530

Thermal Properties

Latent Heat of Fusion, J/g 200
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 940
1660
Melting Onset (Solidus), °C 900
1610
Specific Heat Capacity, J/kg-K 420
540
Thermal Conductivity, W/m-K 35
19
Thermal Expansion, µm/m-K 20
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
37
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 2.9
31
Embodied Energy, MJ/kg 49
500
Embodied Water, L/kg 350
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 530
1330
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 23
40
Strength to Weight: Bending, points 21
37
Thermal Diffusivity, mm2/s 10
7.6
Thermal Shock Resistance, points 21
46

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 66 to 68
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 2.0 to 4.0
0 to 0.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 2.5 to 5.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
98.6 to 100
Zinc (Zn), % 17.3 to 25
0
Residuals, % 0
0 to 0.4