MakeItFrom.com
Menu (ESC)

C86100 Bronze vs. S40945 Stainless Steel

C86100 bronze belongs to the copper alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86100 bronze and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
25
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 660
430
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
26
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.2
Embodied Energy, MJ/kg 49
31
Embodied Water, L/kg 350
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
89
Resilience: Unit (Modulus of Resilience), kJ/m3 530
140
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 10
6.9
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 66 to 68
0
Iron (Fe), % 2.0 to 4.0
85.1 to 89.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 17.3 to 25
0