MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. ACI-ASTM CA6NM Steel

C86200 bronze belongs to the copper alloys classification, while ACI-ASTM CA6NM steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is ACI-ASTM CA6NM steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
17
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 710
850
Tensile Strength: Yield (Proof), MPa 350
620

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
770
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 35
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.5
Embodied Energy, MJ/kg 49
34
Embodied Water, L/kg 340
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 540
1000
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 23
31

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
78.4 to 84.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 1.0
Nickel (Ni), % 0 to 1.0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0