MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. AISI 310S Stainless Steel

C86200 bronze belongs to the copper alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
34 to 44
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 710
600 to 710
Tensile Strength: Yield (Proof), MPa 350
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 35
16
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
4.3
Embodied Energy, MJ/kg 49
61
Embodied Water, L/kg 340
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 540
190 to 310
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
21 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 23
14 to 16

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
48.3 to 57
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.0
Nickel (Ni), % 0 to 1.0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0