MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. ASTM A369 Grade FP1

C86200 bronze belongs to the copper alloys classification, while ASTM A369 grade FP1 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is ASTM A369 grade FP1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
20
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 710
430
Tensile Strength: Yield (Proof), MPa 350
240

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 940
1470
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
50
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.4
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 49
20
Embodied Water, L/kg 340
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
75
Resilience: Unit (Modulus of Resilience), kJ/m3 540
150
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 23
13

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0.1 to 0.2
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
97.8 to 99.06
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.3 to 0.8
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0