MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. AWS E2595

C86200 bronze belongs to the copper alloys classification, while AWS E2595 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is AWS E2595.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
17
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 710
850

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
16
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
4.4
Embodied Energy, MJ/kg 49
61
Embodied Water, L/kg 340
190

Common Calculations

Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 11
4.2
Thermal Shock Resistance, points 23
21

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 60 to 66
0.4 to 1.5
Iron (Fe), % 2.0 to 4.0
51.4 to 64.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.5
Molybdenum (Mo), % 0
2.5 to 4.5
Nickel (Ni), % 0 to 1.0
8.0 to 10.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.2
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
0.4 to 1.0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0