MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. AWS E310Mo

C86200 bronze belongs to the copper alloys classification, while AWS E310Mo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is AWS E310Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
34
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 710
620

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Melting Completion (Liquidus), °C 940
1420
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
14
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
5.1
Embodied Energy, MJ/kg 49
71
Embodied Water, L/kg 340
210

Common Calculations

Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 23
15

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 60 to 66
0 to 0.75
Iron (Fe), % 2.0 to 4.0
42.8 to 52
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
1.0 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
20 to 22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0