MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. AWS E330

C86200 bronze belongs to the copper alloys classification, while AWS E330 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is AWS E330.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
29
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 710
580

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Melting Completion (Liquidus), °C 940
1400
Melting Onset (Solidus), °C 900
1350
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
12
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.9
5.4
Embodied Energy, MJ/kg 49
75
Embodied Water, L/kg 340
180

Common Calculations

Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 23
16

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0.18 to 0.25
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 60 to 66
0 to 0.75
Iron (Fe), % 2.0 to 4.0
40.7 to 51.8
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0