MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. EN 1.4980 Stainless Steel

C86200 bronze belongs to the copper alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 710
1030
Tensile Strength: Yield (Proof), MPa 350
680

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
13
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
26
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
6.0
Embodied Energy, MJ/kg 49
87
Embodied Water, L/kg 340
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 540
1180
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
36
Strength to Weight: Bending, points 22
28
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 23
22

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
49.2 to 58.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 1.0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0