MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. EN 1.5508 Steel

C86200 bronze belongs to the copper alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
11 to 20
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 710
420 to 1460
Tensile Strength: Yield (Proof), MPa 350
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
51
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 340
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 540
260 to 640
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
15 to 52
Strength to Weight: Bending, points 22
16 to 36
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 23
12 to 43

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 60 to 66
0 to 0.25
Iron (Fe), % 2.0 to 4.0
97.9 to 99.199
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.6 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0