MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. SAE-AISI 4320 Steel

C86200 bronze belongs to the copper alloys classification, while SAE-AISI 4320 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is SAE-AISI 4320 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
21 to 29
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 710
570 to 790
Tensile Strength: Yield (Proof), MPa 350
430 to 460

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
46
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.4
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 49
22
Embodied Water, L/kg 340
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 540
480 to 560
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 25
20 to 28
Strength to Weight: Bending, points 22
19 to 24
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 23
19 to 27

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
95.8 to 97
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 1.0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0