MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. C14700 Copper

Both C86200 bronze and C14700 copper are copper alloys. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 21
9.1 to 35
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 710
240 to 320
Tensile Strength: Yield (Proof), MPa 350
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 940
1080
Melting Onset (Solidus), °C 900
1070
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 35
370
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
95
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
96

Otherwise Unclassified Properties

Base Metal Price, % relative 23
30
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 540
31 to 280
Stiffness to Weight: Axial, points 7.8
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 25
7.3 to 10
Strength to Weight: Bending, points 22
9.5 to 12
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 23
8.4 to 12

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Copper (Cu), % 60 to 66
99.395 to 99.798
Iron (Fe), % 2.0 to 4.0
0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0.0020 to 0.0050
Sulfur (S), % 0
0.2 to 0.5
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0
0 to 0.1