MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. S17700 Stainless Steel

C86200 bronze belongs to the copper alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
1.0 to 23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 710
1180 to 1650
Tensile Strength: Yield (Proof), MPa 350
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 35
15
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 49
40
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 540
460 to 3750
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
42 to 59
Strength to Weight: Bending, points 22
32 to 40
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 23
39 to 54

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
70.5 to 76.8
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Nickel (Ni), % 0 to 1.0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0