MakeItFrom.com
Menu (ESC)

C86200 Bronze vs. S39274 Stainless Steel

C86200 bronze belongs to the copper alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C86200 bronze and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 21
17
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 710
900
Tensile Strength: Yield (Proof), MPa 350
620

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 940
1480
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 35
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.9
4.3
Embodied Energy, MJ/kg 49
60
Embodied Water, L/kg 340
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 540
940
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 25
32
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 11
4.2
Thermal Shock Resistance, points 23
25

Alloy Composition

Aluminum (Al), % 3.0 to 4.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 60 to 66
0.2 to 0.8
Iron (Fe), % 2.0 to 4.0
57 to 65.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0