MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. 6182 Aluminum

C86300 bronze belongs to the copper alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C86300 bronze and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 14
6.8 to 13
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 850
230 to 320
Tensile Strength: Yield (Proof), MPa 480
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 890
600
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 35
160
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.4
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 360
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
110 to 520
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 30
23 to 32
Strength to Weight: Bending, points 25
30 to 38
Thermal Diffusivity, mm2/s 11
65
Thermal Shock Resistance, points 28
10 to 14

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
95 to 97.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 60 to 66
0 to 0.1
Iron (Fe), % 2.0 to 4.0
0 to 0.5
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 2.5 to 5.0
0.5 to 1.0
Nickel (Ni), % 0 to 1.0
0
Silicon (Si), % 0
0.9 to 1.3
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 22 to 28
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15