MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. 7049A Aluminum

C86300 bronze belongs to the copper alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C86300 bronze and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 14
5.0 to 5.7
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 850
580 to 590
Tensile Strength: Yield (Proof), MPa 480
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 200
370
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 890
430
Specific Heat Capacity, J/kg-K 420
850
Thermal Conductivity, W/m-K 35
130
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 360
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
1800 to 1990
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
44
Strength to Weight: Axial, points 30
52 to 53
Strength to Weight: Bending, points 25
50 to 51
Thermal Diffusivity, mm2/s 11
50
Thermal Shock Resistance, points 28
25

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 60 to 66
1.2 to 1.9
Iron (Fe), % 2.0 to 4.0
0 to 0.5
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 2.5 to 5.0
0 to 0.5
Nickel (Ni), % 0 to 1.0
0
Silicon (Si), % 0
0 to 0.4
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 22 to 28
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15