MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. ASTM A182 Grade F6b

C86300 bronze belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
260
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 850
850
Tensile Strength: Yield (Proof), MPa 480
710

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 51
30
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
1280
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
30
Strength to Weight: Bending, points 25
26
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 28
31

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 60 to 66
0 to 0.5
Iron (Fe), % 2.0 to 4.0
81.2 to 87.1
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 1.0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0