MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. ASTM A227 Spring Steel

C86300 bronze belongs to the copper alloys classification, while ASTM A227 spring steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is ASTM A227 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
500 to 640
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
12
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 850
1720 to 2220
Tensile Strength: Yield (Proof), MPa 480
1430 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
200 to 260
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
61 to 79
Strength to Weight: Bending, points 25
41 to 48
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 28
55 to 71

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.45 to 0.85
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
97.4 to 99.1
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.3 to 1.3
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0