MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.0535 Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.0535 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.0535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
12
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 850
690
Tensile Strength: Yield (Proof), MPa 480
340

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
48
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 360
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
69
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
310
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 28
22

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
97.1 to 98.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 1.0
0 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0