MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.3963 Alloy

C86300 bronze belongs to the copper alloys classification, while EN 1.3963 alloy belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
29
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 850
440
Tensile Strength: Yield (Proof), MPa 480
310

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 420
460
Thermal Expansion, µm/m-K 20
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.0
4.8
Embodied Energy, MJ/kg 51
66
Embodied Water, L/kg 360
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
260
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 30
15
Strength to Weight: Bending, points 25
16
Thermal Shock Resistance, points 28
110

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
60.5 to 64.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0.1 to 0.2
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0