MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4029 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4029 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
10 to 20
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 850
700 to 930
Tensile Strength: Yield (Proof), MPa 480
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
30
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 51
28
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
440 to 1410
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
25 to 33
Strength to Weight: Bending, points 25
23 to 27
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 28
26 to 34

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
82.8 to 87.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.25
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0