MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4035 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4035 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
220
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 850
690
Tensile Strength: Yield (Proof), MPa 480
400

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
29
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 51
27
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
420
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
25
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 11
7.8
Thermal Shock Resistance, points 28
25

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
82.1 to 86.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0