MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4419 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
11 to 17
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 850
660 to 1590
Tensile Strength: Yield (Proof), MPa 480
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
790
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 51
30
Embodied Water, L/kg 360
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
350 to 3920
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
24 to 57
Strength to Weight: Bending, points 25
22 to 39
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 28
23 to 55

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
82 to 86
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0