MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4646 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
220
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
750
Tensile Strength: Yield (Proof), MPa 480
430

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 920
1390
Melting Onset (Solidus), °C 890
1340
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 20
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 360
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
460
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
27
Strength to Weight: Bending, points 25
24
Thermal Shock Resistance, points 28
16

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 60 to 66
1.5 to 3.0
Iron (Fe), % 2.0 to 4.0
59 to 67.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0