MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4986 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
230
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
750
Tensile Strength: Yield (Proof), MPa 480
560

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 160
940
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
15
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.8
Embodied Energy, MJ/kg 51
67
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
790
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
26
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 28
16

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
59.4 to 66.6
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0 to 1.0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0