MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.7221 Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.7221 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.7221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
11 to 17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 850
650 to 780
Tensile Strength: Yield (Proof), MPa 480
430 to 630

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
44
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 51
20
Embodied Water, L/kg 360
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
83 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
490 to 1050
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
23 to 27
Strength to Weight: Bending, points 25
21 to 24
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 28
19 to 23

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.22 to 0.29
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
96.8 to 98.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0