MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. SAE-AISI 4340 Steel

C86300 bronze belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
210 to 360
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
12 to 22
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 850
690 to 1280
Tensile Strength: Yield (Proof), MPa 480
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
44
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 51
22
Embodied Water, L/kg 360
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
590 to 3490
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
24 to 45
Strength to Weight: Bending, points 25
22 to 33
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 28
20 to 38

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
95.1 to 96.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 1.0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0