MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. C63000 Bronze

Both C86300 bronze and C63000 bronze are copper alloys. They have 74% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14
7.9 to 15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 850
660 to 790
Tensile Strength: Yield (Proof), MPa 480
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 160
230
Melting Completion (Liquidus), °C 920
1050
Melting Onset (Solidus), °C 890
1040
Specific Heat Capacity, J/kg-K 420
440
Thermal Conductivity, W/m-K 35
39
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.0
3.5
Embodied Energy, MJ/kg 51
57
Embodied Water, L/kg 360
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
470 to 640
Stiffness to Weight: Axial, points 7.8
7.9
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 30
22 to 26
Strength to Weight: Bending, points 25
20 to 23
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 28
23 to 27

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
9.0 to 11
Copper (Cu), % 60 to 66
76.8 to 85
Iron (Fe), % 2.0 to 4.0
2.0 to 4.0
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 1.5
Nickel (Ni), % 0 to 1.0
4.0 to 5.5
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 22 to 28
0 to 0.3
Residuals, % 0
0 to 0.5