MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. N08320 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
40
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 850
580
Tensile Strength: Yield (Proof), MPa 480
220

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 890
1350
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.0
4.9
Embodied Energy, MJ/kg 51
69
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
120
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
20
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 28
13

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
40.4 to 50
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.5
Nickel (Ni), % 0 to 1.0
25 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0