MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. S41425 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
280
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
17
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
920
Tensile Strength: Yield (Proof), MPa 480
750

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
810
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 35
16
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 51
40
Embodied Water, L/kg 360
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
1420
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
33
Strength to Weight: Bending, points 25
27
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 28
33

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 60 to 66
0 to 0.3
Iron (Fe), % 2.0 to 4.0
74 to 81.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 1.0
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0