MakeItFrom.com
Menu (ESC)

C86400 Bronze vs. AISI 201 Stainless Steel

C86400 bronze belongs to the copper alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86400 bronze and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
4.6 to 51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 470
650 to 1450
Tensile Strength: Yield (Proof), MPa 150
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
880
Melting Completion (Liquidus), °C 880
1410
Melting Onset (Solidus), °C 860
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 88
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 48
38
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 110
230 to 2970
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
23 to 52
Strength to Weight: Bending, points 17
22 to 37
Thermal Diffusivity, mm2/s 29
4.0
Thermal Shock Resistance, points 16
14 to 32

Alloy Composition

Aluminum (Al), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 56 to 62
0
Iron (Fe), % 0.4 to 2.0
67.5 to 75
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0.1 to 1.0
5.5 to 7.5
Nickel (Ni), % 0 to 1.0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 34 to 42
0
Residuals, % 0 to 1.0
0